∣❁∣◇⯏∣⑄∣⯏◇∣❁∣

835 bookmarks
Newest
/gfx/ - 𖣠⚪ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⚪𖣓⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ⚪𖣓⚪ᔓᔕᑎꖴ⚭ᗩꗳ⚪𖡼⚪𔗢⚪🞋⚪𔗢⚪𖡼⚪ꗳᗩ⚭ꖴᑎᔓᔕ⚪𖣓⚪ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣓⚪ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⚪𖣠
/gfx/ - 𖣠⚪ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⚪𖣓⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ⚪𖣓⚪ᔓᔕᑎꖴ⚭ᗩꗳ⚪𖡼⚪𔗢⚪🞋⚪𔗢⚪𖡼⚪ꗳᗩ⚭ꖴᑎᔓᔕ⚪𖣓⚪ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣓⚪ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⚪𖣠
·web.archive.org·
/gfx/ - 𖣠⚪ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⚪𖣓⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ⚪𖣓⚪ᔓᔕᑎꖴ⚭ᗩꗳ⚪𖡼⚪𔗢⚪🞋⚪𔗢⚪𖡼⚪ꗳᗩ⚭ꖴᑎᔓᔕ⚪𖣓⚪ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣓⚪ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⚪𖣠
Blender 3.3+ Higgsas Geo Node Groups v6 Crack 2023 Download - Vfxmed
Blender 3.3+ Higgsas Geo Node Groups v6 Crack 2023 Download - Vfxmed
Blender Geometry Nodes toolset pack includes over 120 wide range of advance node groups to help improve and enhance procedural workflows Generators Curves Utilities Geometry Measure Mesh Primitives Distribution SDF Nodes Falloffs Simulation Selection Current Node Groups Deformers Bend Twist Stretch Taper…Read More »
·vfxmed.com·
Blender 3.3+ Higgsas Geo Node Groups v6 Crack 2023 Download - Vfxmed
⚪ᴥ⚪ᗱᗴ⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ᑎ⚪ꗳ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ᗝ⚪ᗱᗴ⚪ꖴ⚪ꗳ⚪ꖴ⚪ᑐᑕ⚪ᗱᗴ⚪ߦ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪ߦ⚪ᗱᗴ⚪ᑐᑕ⚪ꖴ⚪ꗳ⚪ꖴ⚪ᗱᗴ⚪ᗝ⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ꗳ⚪ᑎ⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪ᗱᗴ⚪ᴥ⚪
⚪ᴥ⚪ᗱᗴ⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ᑎ⚪ꗳ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ᗝ⚪ᗱᗴ⚪ꖴ⚪ꗳ⚪ꖴ⚪ᑐᑕ⚪ᗱᗴ⚪ߦ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪ߦ⚪ᗱᗴ⚪ᑐᑕ⚪ꖴ⚪ꗳ⚪ꖴ⚪ᗱᗴ⚪ᗝ⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ꗳ⚪ᑎ⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪ᗱᗴ⚪ᴥ⚪
·web.archive.org·
⚪ᴥ⚪ᗱᗴ⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᗱᗴ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ᑎ⚪ꗳ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ᗝ⚪ᗱᗴ⚪ꖴ⚪ꗳ⚪ꖴ⚪ᑐᑕ⚪ᗱᗴ⚪ߦ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪ߦ⚪ᗱᗴ⚪ᑐᑕ⚪ꖴ⚪ꗳ⚪ꖴ⚪ᗱᗴ⚪ᗝ⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ꗳ⚪ᑎ⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗱᗴ⚪◯⚪ߦ⚪ᙁ⚪Ⓞ⚪✤⚪ᗱᗴ⚪ᴥ⚪
Periodic Squircle - 2210.15232.pdf
Superellipsoid -- from Wolfram MathWorld
Superellipsoid -- from Wolfram MathWorld
The superellipsoid is a generalization of the ellipsoid by allowing different exponents of the variables in the algebraic representation. It is similarly a generalization of the superellipse to three dimensions. The version called the superquadratic ellipsoid is defined by the equation (|x|^(2/e)+|y|^(2/e))^(e/n)+|z|^(2/n)=1, where e and n are the east-west and north-south exponents, respectively. This superellipsoid can be rendered in POVRay® with the command superellipsoid{...
·mathworld.wolfram.com·
Superellipsoid -- from Wolfram MathWorld
/biz/ - ⚪ᗱᗴᴥᗱᗴ옷ߦᔓᔕ⚪ᔓᔕᗱᗴᙁᑐᑕᴥꖴᑐᑕ⚪✤ИNᗱᗴᕤᕦИNᗩ✤⚪ᙁᗩꖴᗝᗩᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥᗩᗝꖴᗩᙁ⚪✤ᗩИNᕤᕦᗱᗴИN✤⚪ᑐᑕꖴᴥᑐᑕᙁᗱᗴᔓᔕ⚪ᔓᔕߦ옷ᗱᗴᴥᗱᗴ⚪
/gfx/ - ⚪ᗱᗴᴥᗱᗴ옷ߦᔓᔕ⚪ᔓᔕᗱᗴᙁᑐᑕᴥꖴᑐᑕ⚪✤ИNᗱᗴᕤᕦИNᗩ✤⚪ᙁᗩꖴᗝᗩᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥᗩᗝꖴᗩᙁ⚪✤ᗩИNᕤᕦᗱᗴИN✤⚪ᑐᑕꖴᴥᑐᑕᙁᗱᗴᔓᔕ⚪ᔓᔕߦ옷ᗱᗴᴥᗱᗴ⚪
/gd/ - ⚪ᗱᗴᴥᗱᗴ옷ߦᔓᔕ⚪ᔓᔕᗱᗴᙁᑐᑕᴥꖴᑐᑕ⚪✤ИNᗱᗴᕤᕦИNᗩ✤⚪ᙁᗩꖴᗝᗩᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥᗩᗝꖴᗩᙁ⚪✤ᗩИNᕤᕦᗱᗴИN✤⚪ᑐᑕꖴᴥᑐᑕᙁᗱᗴᔓᔕ⚪ᔓᔕߦ옷ᗱᗴᴥᗱᗴ⚪
/gd/ - ⚪ᗱᗴᴥᗱᗴ옷ߦᔓᔕ⚪ᔓᔕᗱᗴᙁᑐᑕᴥꖴᑐᑕ⚪✤ИNᗱᗴᕤᕦИNᗩ✤⚪ᙁᗩꖴᗝᗩᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥᗩᗝꖴᗩᙁ⚪✤ᗩИNᕤᕦᗱᗴИN✤⚪ᑐᑕꖴᴥᑐᑕᙁᗱᗴᔓᔕ⚪ᔓᔕߦ옷ᗱᗴᴥᗱᗴ⚪
/gd/ - Graphic Design - ⚪ᗱᗴᴥᗱᗴ옷ߦᔓᔕ⚪ᔓᔕᗱᗴᙁᑐᑕᴥꖴᑐᑕ⚪✤ИNᗱᗴᕤᕦИNᗩ✤⚪ᙁᗩꖴᗝᗩᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥᗩᗝꖴᗩᙁ⚪✤ᗩИNᕤᕦᗱᗴИN✤⚪ᑐᑕꖴᴥᑐᑕᙁᗱᗴᔓᔕ⚪ᔓᔕߦ옷ᗱᗴᴥᗱᗴ⚪
·tbpchan.cz·
/gd/ - ⚪ᗱᗴᴥᗱᗴ옷ߦᔓᔕ⚪ᔓᔕᗱᗴᙁᑐᑕᴥꖴᑐᑕ⚪✤ИNᗱᗴᕤᕦИNᗩ✤⚪ᙁᗩꖴᗝᗩᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥᗩᗝꖴᗩᙁ⚪✤ᗩИNᕤᕦᗱᗴИN✤⚪ᑐᑕꖴᴥᑐᑕᙁᗱᗴᔓᔕ⚪ᔓᔕߦ옷ᗱᗴᴥᗱᗴ⚪
Steiner Chain -- from Wolfram MathWorld
Steiner Chain -- from Wolfram MathWorld
Given two circles with one interior to the other, if small tangent circles can be inscribed around the region between the two circles such that the final circle is tangent to the first, the circles form a Steiner chain. The simplest way to construct a Steiner chain is to perform an inversion on a symmetrical arrangement on n circles packed between a central circle of radius b and an outer concentric circle of radius a (Wells 1991). In this arrangement, sin(pi/n)=(a-b)/(a+b), (1) so the...
·mathworld.wolfram.com·
Steiner Chain -- from Wolfram MathWorld
How to work out how many small circles I can fit into a big circle - Quora
How to work out how many small circles I can fit into a big circle - Quora
Answer (1 of 7): If it’s a circular table you want, and the outermost coins sit flush with the edge, and you’re looking for perfect regularity in the way they are arranged, it’s not gonna happen. You’ll find gaps of various shapes and sizes between the coins. But if you are willing to go square,...
·quora.com·
How to work out how many small circles I can fit into a big circle - Quora